首页> 外文OA文献 >A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media
【2h】

A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media

机译:多孔介质中可压缩两相流的组合有限体积非协调有限元格式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.
机译:我们提出并分析了通用网格上的有限体积-非协调有限元组合方案,以模拟多孔介质中的两个可压缩相流。扩散项可以是各向异性的,也可以是非均质的,可以通过分段线性非协调三角形有限元离散化。其他术语通过在双网格上以单元为中心的有限体积方案离散化,其中双体积围绕原始网格的侧面构造。每个相的相对磁导率根据双界面处的速度符号而降低。该技术还确保了在空间网格的非限制性形状规则和所有透射率的正性下,饱和度的离散最大原理的有效性。接下来,建立表示毛细项的压力和饱和度函数的先验估计。这些稳定性结果基于Kolmogorov紧致性定理的使用导致了一些紧致性论证,并允许我们导出近似解序列的子序列的收敛性,直至连续方程的弱解,前提是网格尺寸趋于零。当各相的密度取决于其自身的压力时,将为整个系统提供证明。 ©2014施普林格出版社柏林海德堡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号